Stable Boundary Layer in Complex Terrain. Part II: Geometrical and Sheltering Effects on Mixing

Author:

Medeiros Luiz E.1,Fitzjarrald David R.1

Affiliation:

1. Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Abstract

AbstractThe authors examine how terrain texture and topography influence nocturnal mixing rates. Local topographic curvature and site sheltering exhibit systematic influences on nocturnal heat and momentum fluxes and the near-surface potential temperature distribution. This influence is particularly evident in hilly terrain with patchy forested areas, typical of eastern North America and many other regions. Exposure to local obstacles, quantified using Fujita’s “transmission factor,” has its maximum influence on mixing during strong winds (>5 m s−1), whereas the effects of local terrain curvature dominate under weaker winds. Such complementary dominance conditions currently limit direct comparison of the two effects. Even with a limited network of 10 stations, it is clear that preferred regions for mixing can be identified in advance given knowledge of land cover and topography. When designing a network of surface stations to be deployed in heterogeneous terrain, one should consider site curvature, slope, and exposure in addition to spatial coverage.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3