Author:
Ding Shouguo,Yang Ping,Baum Bryan A.,Heidinger Andrew,Greenwald Thomas
Abstract
AbstractThis paper describes the development of an ice cloud radiance simulator for the anticipated Geostationary Operational Environmental Satellite R (GOES-R) Advanced Baseline Imager (ABI) solar channels. The simulator is based on the discrete ordinates radiative transfer (DISORT) model. A set of correlated k-distribution (CKD) models is developed for the ABI solar channels to account for atmospheric trace gas absorption. The CKD models are based on the ABI spectral response functions and also consider when multiple gases have overlapping absorption. The related errors of the transmittance profile are estimated on the basis of the exact line-by-line results, and it is found that errors in transmittance are less than 0.2% for all but one of the ABI solar channels. The exception is for the 1.378-μm channel, centered near a strong water vapor absorption band, for which the errors are less than 2%. For ice clouds, the band-averaged bulk-scattering properties for each ABI [and corresponding Moderate Resolution Imaging Spectroradiometer (MODIS)] solar channel are derived using an updated single-scattering property database of both smooth and severely roughened ice particles, which include droxtals, hexagonal plates, hexagonal hollow and solid columns, three-dimensional hollow and solid bullet rosettes, and several types of aggregates. The comparison shows close agreement between the radiance simulator and the benchmark model, the line-by-line radiative transfer model (LBLRTM)+DISORT model. The radiances of the ABI and corresponding MODIS measurements are compared. The results show that the radiance differences between the ABI and MODIS channels under ice cloud conditions are likely due to the different band-averaged imaginary indices of refraction.
Publisher
American Meteorological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献