Evaluating the Accuracy of a High-Resolution Model Simulation through Comparison with MODIS Observations

Author:

Lee Yong-Keun1,Otkin Jason A.1,Greenwald Thomas J.1

Affiliation:

1. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

AbstractSynthetic infrared brightness temperatures (BTs) derived from a high-resolution Weather Research and Forecasting (WRF) model simulation over the contiguous United States are compared with Moderate Resolution Imaging Spectroradiometer (MODIS) observations to assess the accuracy of the model-simulated cloud field. A sophisticated forward radiative transfer model (RTM) is used to compute the synthetic MODIS observations. A detailed comparison of synthetic and real MODIS 11-μm BTs revealed that the model simulation realistically depicts the spatial characteristics of the observed cloud features. Brightness temperature differences (BTDs) computed for 8.5–11 and 11–12 μm indicate that the combined numerical model–RTM system realistically treats the radiative properties associated with optically thin cirrus clouds. For instance, much larger 11–12-μm BTDs occurred within thin clouds surrounding optically thicker, mesoscale cloud features. Although the simulated and observed BTD probability distributions for optically thin cirrus clouds had a similar range of positive values, the synthetic 11-μm BTs were much colder than observed. Previous studies have shown that MODIS cloud optical thickness values tend to be too large for thin cirrus clouds, which contributed to the apparent cold BT bias in the simulated thin cirrus clouds. Errors are substantially reduced after accounting for the observed optical thickness bias, which indicates that the thin cirrus clouds are realistically depicted during the model simulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3