Mesoscale Simulations of Australian Direct Normal Irradiance, Featuring an Extreme Dust Event

Author:

Mukkavilli S. K.1,Prasad A. A.2,Taylor R. A.3,Troccoli A.4,Kay M. J.5

Affiliation:

1. School of Photovoltaic and Renewable Energy Engineering, University of South Wales, Sydney, New South Wales, and CSIRO Oceans and Atmosphere Flagship, Canberra, Australia

2. Centre of Excellence for Climate System Science, Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

3. School of Photovoltaic and Renewable Energy Engineering, and School of Mechanical and Manufacturing Engineering, University of South Wales, Sydney, New South Wales, Australia

4. CSIRO Oceans and Atmosphere Flagship, Canberra, Australia, and School of Environmental Sciences, University of East Anglia, and World Energy and Meteorology Council, Norwich, United Kingdom

5. School of Photovoltaic and Renewable Energy Engineering, University of South Wales, Sydney, New South Wales, Australia

Abstract

AbstractDirect normal irradiance (DNI) is the main input for concentrating solar power (CSP) technologies—an important component in future energy scenarios. DNI forecast accuracy is sensitive to radiative transfer schemes (RTSs) and microphysics in numerical weather prediction (NWP) models. Additionally, NWP models have large regional aerosol uncertainties. Dust aerosols can significantly attenuate DNI in extreme cases, with marked consequences for applications such as CSP. To date, studies have not compared the skill of different physical parameterization schemes for predicting hourly DNI under varying aerosol conditions over Australia. The authors address this gap by aiming to provide the first Weather and Forecasting (WRF) Model DNI benchmarks for Australia as baselines for assessing future aerosol-assimilated models. Annual and day-ahead simulations against ground measurements at selected sites focusing on an extreme dust event are run. Model biases are assessed for five shortwave RTSs at 30- and 10-km grid resolutions, along with the Thompson aerosol-aware scheme in three different microphysics configurations: no aerosols, fixed optical properties, and monthly climatologies. From the annual simulation, the best schemes were the Rapid Radiative Transfer Model for global climate models (RRTMG), followed by the new Goddard and Dudhia schemes, despite the relative simplicity of the latter. These top three RTSs all had 1.4–70.8 W m−2 lower mean absolute error than persistence. RRTMG with monthly aerosol climatologies was the best combination. The extreme dust event had large DNI mean bias overpredictions (up to 4.6 times), compared to background aerosol results. Dust storm–aware DNI forecasts could benefit from RRTMG with high-resolution aerosol inputs.

Funder

University of New South Wales

Commonwealth Scientific and Industrial Research Organisation

National Computational Infrastructure

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3