Parametric Modeling of Transitioning Cyclone Wind Fields for Risk Assessment Studies in the Western North Pacific

Author:

Loridan T.1,Khare S.1,Scherer E.1,Dixon M.1,Bellone E.1

Affiliation:

1. Risk Management Solutions, London, United Kingdom

Abstract

AbstractProbabilistic risk assessment systems for tropical cyclone hazards rely on large ensembles of model simulations to characterize cyclones tracks, intensities, and the extent of the associated damaging winds. Given the computational costs, the wind field is often modeled using parametric formulations that make assumptions that are based on observations of tropical systems (e.g., satellite, or aircraft reconnaissance). In particular, for the Northern Hemisphere, most of the damaging contribution is assumed to be from the right of the moving cyclone, with the left-hand-side winds being much weaker because of the direction of storm motion. Recent studies have highlighted that this asymmetry assumption does not hold for cyclones undergoing extratropical transitions around Japan. Transitioning systems can exhibit damaging winds on both sides of the moving cyclone, with wind fields often characterized as resembling a horseshoe. This study develops a new parametric formulation of the extratropical transition phase for application in risk assessment systems. A compromise is sought between the need to characterize the horseshoe shape while keeping the formulation simple to allow for implementation within a risk assessment framework. For that purpose the tropical wind model developed by Willoughby et al. is selected as a starting point and parametric bias correction fields are applied to build the target shape. Model calibration is performed against a set of 37 extratropical transition cases simulated using the Weather Research and Forecasting Model. This newly developed parametric model of the extratropical transition phase shows an ability to reproduce wind field features observed in the western North Pacific Ocean while using only a restricted number of input parameters.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic Precipitation Model Using Large Ensemble Data;Journal of Disaster Research;2023-12-01

2. Machine Learning–Based Hurricane Wind Reconstruction;Weather and Forecasting;2022-04

3. A SAR-Based Parametric Model for Tropical Cyclone Tangential Wind Speed Estimation;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2022

4. Ensemble generation for hurricane hazard assessment along the United States’ Atlantic coast;Coastal Engineering;2021-10

5. A statistical–parametric model of tropical cyclones for hazard assessment;Natural Hazards and Earth System Sciences;2021-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3