A Systematic Study of Longwave Radiative Heating and Cooling within Valleys and Basins Using a Three-Dimensional Radiative Transfer Model

Author:

Hoch Sebastian W.,Whiteman C. David,Mayer Bernhard

Abstract

AbstractThe Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres (MYSTIC) three-dimensional radiative transfer model was used in a parametric study to determine the strength of longwave radiative heating and cooling in atmospheres enclosed in idealized valleys and basins. The parameters investigated included valley or basin shape, width, and near-surface temperature contrasts. These parameters were varied for three different representative atmospheric temperature profiles for different times of day. As a result of counterradiation from surrounding terrain, nighttime longwave radiative cooling in topographic depressions was generally weaker than over flat terrain. In the center of basins or valleys with widths exceeding 2 km, cooling rates quickly approached those over flat terrain, whereas the cooling averaged over the entire depression volume was still greatly reduced. Valley or basin shape had less influence on cooling rates than did valley width. Strong temperature gradients near the surface associated with nighttime inversion and daytime superadiabatic layers over the slopes significantly increased longwave radiative cooling and heating rates. Local rates of longwave radiative heating ranged between −30 (i.e., cooling) and 90 K day−1. The effects of the near-surface temperature gradients extended tens of meters into the overlying atmospheres. In small basins, the strong influence of nocturnal near-surface temperature inversions could lead to cooling rates exceeding those over flat plains. To investigate the relative role of longwave radiative cooling on total nighttime cooling in a basin, simulations were conducted for Arizona’s Meteor Crater using observed atmospheric profiles and realistic topography. Longwave radiative cooling accounted for nearly 30% of the total nighttime cooling observed in the Meteor Crater during a calm October night.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference21 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3