A Global Assessment of the Spatial Distribution of Precipitation Occurrence

Author:

Smalley Mark1,L’Ecuyer Tristan1

Affiliation:

1. University of Wisconsin–Madison, Madison, Wisconsin

Abstract

AbstractThe spatial distribution of precipitation occurrence has important implications for numerous applications ranging from defining cloud radiative effects to modeling hydrologic runoff, statistical downscaling, and stochastic weather generation. This paper introduces a new method of describing the spatial characteristics of rainfall and snowfall that takes advantage of the high sensitivity and high resolution of the W-band cloud precipitation radar aboard CloudSat. The resolution dependence of precipitation occurrence is described by a two-parameter exponential function defined by a shape factor that governs the variation in the distances between precipitation events and a scale length that represents the overall probability of precipitation and number density of distinct events.Geographic variations in the shape factor and scale length are consistent with large-scale circulation patterns and correlate with environmental conditions on local scales. For example, a large contrast in scale lengths between land and ocean areas reflects the more extensive, widespread nature of precipitation over land than over ocean. An analysis of warm rain in the southeast Pacific reveals a shift from frequent isolated systems to less frequent but more regularly spaced systems along a transect connecting stratocumulus and trade cumulus cloud regimes. A similar analysis during the Amazon wet season reveals a relationship between the size and frequency of convection and zonal wind direction with precipitation exhibiting a more oceanic character during periods of westerly winds. These select examples demonstrate the utility of this approach for capturing the sensitivity of the spatial characteristics of precipitation to environmental influences on both local and larger scales.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3