Validation of the CERES Edition-4A Surface-Only Flux Algorithms

Author:

Kratz David P.1,Gupta Shashi K.2,Wilber Anne C.2,Sothcott Victor E.2

Affiliation:

1. Science Directorate, NASA Langley Research Center, Hampton, Virginia

2. Science Systems Applications, Inc., Hampton, Virginia

Abstract

AbstractSurface radiative fluxes have been derived with the objective of supplementing top-of-atmosphere (TOA) radiative fluxes being measured under NASA’s Clouds and the Earth’s Radiant Energy System (CERES) project. This has been accomplished by using combinations of CERES TOA measurements, parameterized radiative transfer algorithms, and high-quality meteorological datasets available from reanalysis projects. Current CERES footprint-level products include surface fluxes derived from two shortwave (SW) and three longwave (LW) algorithms designated as SW models A and B and LW models A, B, and C. The SW and LW models A work for clear conditions only; the other models work for both clear and cloudy conditions. The current CERES Edition-4A computed surface fluxes from all models are validated against ground-based flux measurements from high-quality surface networks like the Baseline Surface Radiation Network and NOAA’s Surface Radiation Budget Network (SURFRAD). Validation results as systematic and random errors are provided for all models, separately for five different surface types and combined for all surface types as tables and scatterplots. Validation of surface fluxes is now a part of CERES processing and is used to continually improve the above algorithms. Since both models B work for clear and cloudy conditions alike and meet the accuracy requirement, their results are considered to be the most reliable and most likely to be retained for future work. Both models A have limited use given that they work for clear skies only. Models B will continue to undergo further improvement as more validation results become available.

Funder

NASA CERES

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3