Impact of Nudging Parameters on Dynamical Downscaling over CORDEX East Asia Phase II Domain: The Case of Summer 2003

Author:

Yang Linyun1,Wang Shuyu1,Tang Jianping1,Niu Xiaorui1,Fu Congbin1

Affiliation:

1. School of Atmospheric Sciences, and CMA-NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, Nanjing University, Nanjing, China

Abstract

AbstractIn this paper, the sensitivity of the Weather Research and Forecasting (WRF) Model to the nudging parameters in simulating July–August (JJA) precipitation was assessed with 16 experiments over the Coordinated Regional Climate Downscaling Experiment East Asia II (CORDEX-EA-II) domain. The effects of various nudging parameters in spectral nudging (referred to as SN) and grid nudging (referred to as AN) experiments are examined, including wavenumbers, relaxation time, nudging levels, and nudging variables for SN and relaxation time and nudging variables for AN. Results showed that the applications of spectral nudging and grid nudging methods in WRF simulations can improve the model’s ability to reproduce the JJA extreme precipitation event and accompanying large-scale fields in 2003. The major findings include 1) spectral nudging is superior to grid nudging in simulating heavy rainfall and low-level circulation, 2) nudging both kinematic and thermodynamic variables is efficient to better simulate the JJA precipitation for both SN and AN simulations, 3) in SN simulations, the options of wavenumbers display stronger impact on JJA precipitation if nudging solely the kinematic variables instead of both kinematic and thermodynamic variables over wet subregions, and 4) the free developed large-scale processes associated with small nudging wavenumbers can diminish the improvement from nudging both kinematic and thermodynamic variables in simulating subseasonal variations of precipitation. Overall, the experiment that adopts spectral nudging of both kinematic and thermodynamic variables, 1-h relaxation time, and four or eight nudging wavenumbers captures the characteristics of summer climate more reasonably.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Open Science Foundation of State Key Laboratory of Severe Weather

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3