Non-Gaussian Analysis of Observations from the Atmospheric Infrared Sounder Compared with ERA and MERRA Reanalyses

Author:

De Souza-Machado Sergio1,Tangborn Andrew1,Sura Philip2,Hepplewhite Christopher1,Strow L. Larrabee3

Affiliation:

1. Joint Center for Earth Technology, University of Maryland, Baltimore County, Baltimore, Maryland

2. Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida

3. Physics Department, University of Maryland, Baltimore County, Baltimore, Maryland

Abstract

AbstractStatistical relationships between higher-order moments of probability density functions (PDFs) are used to analyze top-of-atmosphere radiance measurements made by the Atmospheric Infrared Sounder (AIRS) and radiance calculations from the ECMWF Re-Analysis (ERA) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) over a 10-yr period. The statistical analysis used in this paper has previously been applied to sea surface temperature, and here the authors show that direct satellite radiance observations of atmospheric variability also exhibit stochastic forcing characteristics. The authors have chosen six different AIRS channels based on the sensitivity of their measured radiances to a variety of geophysical properties. In each of these channels, the authors have found evidence of correlated additive and multiplicative (CAM) stochastic forcing. In general, channels sensitive to tropospheric humidity and surface temperature show the strongest evidence of CAM forcing, while those sensitive to stratospheric temperature and ozone exhibit the weakest forcing. Radiance calculations from ERA and MERRA agree well with AIRS measurements in the Gaussian part of the PDFs but show some differences in the tails, indicating that the reanalyses may be missing some extrema there. The CAM forcing is investigated through numerical simulation of simple stochastic differential equations (SDEs). The authors show how measurements agree better with weaker CAM forcing, achieved by reducing the multiplicative forcing or by increasing the spatial correlation of the added noise in the case of an SDE with one spatial dimension. This indicates that atmospheric models could be improved by adjusting nonlinear terms that couple long and short time scales.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the determination of the optimal parameters in the CAM model;Chaos: An Interdisciplinary Journal of Nonlinear Science;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3