Tropical Cyclone Center Fix Using CYGNSS Winds

Author:

Mayers David1,Ruf Christopher1

Affiliation:

1. University of Michigan, Ann Arbor, Michigan

Abstract

AbstractA new method is described for determining the center location of a tropical cyclone (TC) using wind speed measurements by the NASA Cyclone Global Navigation Satellite System (CYGNSS). CYGNSS measurements made during TC overpasses are used to constrain a parametric wind speed model in which storm center location is varied. The “MTrack” storm center location is selected to minimize the residual difference between model and measurement. Results of the MTrack center fix are compared to the National Hurricane Center (NHC) Best Track, the Automated Rotational Center Hurricane Eye Retrieval (ARCHER), and aircraft reconnaissance fixes for category 1–category 3 TCs during the 2017 and 2018 hurricane seasons. MTrack produces storm center locations at intermediate times between NHC fixes with a factor of 5.6 overall reduction in sensitivity to uncertainties in the NHC fixes between which it interpolates. The MTrack uncertainty is found to be larger in the cross-track direction than the along-track direction, although this behavior and the absolute accuracy of position estimates require further investigation.

Funder

NASA Science Mission Directorate

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote sensing and its applications using GNSS reflected signals: advances and prospects;Satellite Navigation;2024-05-27

2. A review of the BuFeng-1 GNSS-R mission: calibration and validation results of sea surface and land surface;Geo-spatial Information Science;2024-04-16

3. Retrieval and validation of asymmetric hurricane intensity by CYGNSS;Second International Conference on Environmental Remote Sensing and Geographic Information Technology (ERSGIT 2023);2024-02-21

4. Ocean Remote Sensing Using Spaceborne GNSS-Reflectometry: A Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

5. Latest Advances in the Global Navigation Satellite System—Reflectometry (GNSS-R) Field;Remote Sensing;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3