Affiliation:
1. Department of Atmospheric Sciences, University of Hawai‘i at Manoa, Honolulu, Hawaii
Abstract
AbstractThe seasonal variations of rainfall over the island of Hawaii are studied using the archives of the daily model run from the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) from June 2004 to February 2010. Local effects mainly drive the rainfall on the Kona coast in the early morning and the lower slopes in the afternoon. During the summer, the incoming trade winds are more persistent and moister than in winter. The moisture content in the wake zone is higher than open-ocean values because of the convergent airflow associated with dual counterrotating vortices. As the westerly reversed flow moves toward the Kona coast, it decelerates with increasing moisture and a moisture maximum over the coastal area, especially in the afternoon hours in summer months. The higher afternoon rainfall on the Kona lower slopes in summer than in winter is caused by a moister (>6 mm) westerly reversed flow bringing moisture inland and merging with a stronger upslope flow resulting from solar heating. Higher nocturnal rainfall off the Kona coast in summer than in winter is caused by the low-level convergence between a moister westerly reversed flow and offshore flow. On the windward slopes, the simulated rainfall accumulation in winter is higher because of frequently occurring synoptic disturbances during the winter storm season. Nevertheless, early morning rainfall along the windward coast and afternoon rainfall over the windward slopes of the Kohala Mountains is lower in winter because the incoming trades are drier.
Funder
National Science Foundation
Publisher
American Meteorological Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献