Numerical Simulations of Seasonal Variations of Rainfall over the Island of Hawaii

Author:

Huang Yu-Fen1,Chen Yi-Leng1

Affiliation:

1. Department of Atmospheric Sciences, University of Hawai‘i at Manoa, Honolulu, Hawaii

Abstract

AbstractThe seasonal variations of rainfall over the island of Hawaii are studied using the archives of the daily model run from the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) from June 2004 to February 2010. Local effects mainly drive the rainfall on the Kona coast in the early morning and the lower slopes in the afternoon. During the summer, the incoming trade winds are more persistent and moister than in winter. The moisture content in the wake zone is higher than open-ocean values because of the convergent airflow associated with dual counterrotating vortices. As the westerly reversed flow moves toward the Kona coast, it decelerates with increasing moisture and a moisture maximum over the coastal area, especially in the afternoon hours in summer months. The higher afternoon rainfall on the Kona lower slopes in summer than in winter is caused by a moister (>6 mm) westerly reversed flow bringing moisture inland and merging with a stronger upslope flow resulting from solar heating. Higher nocturnal rainfall off the Kona coast in summer than in winter is caused by the low-level convergence between a moister westerly reversed flow and offshore flow. On the windward slopes, the simulated rainfall accumulation in winter is higher because of frequently occurring synoptic disturbances during the winter storm season. Nevertheless, early morning rainfall along the windward coast and afternoon rainfall over the windward slopes of the Kohala Mountains is lower in winter because the incoming trades are drier.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3