Seasonal Changes in Water and Energy Balances over the Appalachian Region and Beyond throughout the Twenty-First Century

Author:

Fernandez Rodrigo1,Zegre Nicolas1

Affiliation:

1. West Virginia University, Morgantown, West Virginia

Abstract

AbstractThe Appalachian Mountains serve as a water source for important population centers in the eastern and midwestern United States. Despite this, the effects of climate change on the hydroclimatology of the region have not been thoroughly assessed, and its effects for water resources remain uncertain. In this study, we analyze the effects of climate change in a holistic approach to consider differential changes between atmospheric water supply (precipitation) and atmospheric water demand (potential evapotranspiration). We analyze the absolute and relative changes in both variables, as well as their relation (aridity index) and future projected shifts in their seasonality. Our findings show that precipitation is projected to increase in the northeastern part of the region and decrease in the southwest with a transition zone in the central Appalachians. Potential evapotranspiration increases consistently throughout the twenty-first century at a higher rate than precipitation, increasing the aridity of the region except for some small localized pockets at high elevations. The seasonality of precipitation indicates different shifts across the region related to changes in the dominant synoptic drivers of the region and changes in the seasonal characteristics of the land surface. All changes are exacerbated in the most extreme future climate scenario, highlighting the importance of local to global policies toward a more sustainable water resources development. In addition, we perform a basin-scale assessment on 20 major rivers with headwaters within the “Appalachian Region.” Our basin-scale results enforce the gridded regional results and indicate that, as temperatures continue to increase, lowland areas will rely more heavily on higher-elevation forested headwater catchments for water supply.

Funder

National Science Foundation

National Institute of Food and Agriculture

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference91 articles.

1. Development of gridded surface meteorological data for ecological applications and modelling;Abatzoglou;Int. J. Climatol.,2013

2. A comparison of statistical downscaling methods suited for wildfire applications;Abatzoglou;Int. J. Climatol.,2012

3. Evaluating stochastic precipitation generators for climate change impact studies of New York City’s primary water supply;Acharya;J. Hydrometeor.,2017

4. Appalachian Regional Commission, 2009: The Appalachian Region. Appalachian Regional Commission, https://www.arc.gov/appalachian_region/theappalachianregion.asp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3