Atmospheric Motion Vectors Derived from an Infrared Window Channel of a Geostationary Satellite Using Particle Image Velocimetry

Author:

Chuang Wei-Liang1,Chou Chien-Ben2,Chang Kuang-An3,Chang Yu-Cheng2,Chin Hsin-Lung2

Affiliation:

1. Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas

2. Telecommunications and Radar Division, Central Weather Bureau, Taipei, Taiwan

3. Zachry Department of Civil Engineering, and Department of Ocean Engineering, Texas A&M University, College Station, Texas

Abstract

AbstractAs the new-generation geostationary satellite Himawari-8 provides a greater frequency and more observation channels than its predecessor, the Multifunctional Transport Satellite series (e.g., MTSAT-2), an opportunity arises to generate atmospheric motion vectors (AMVs) with an increased accuracy and extensive distribution over eastern Asia. In this work AMVs were derived from consecutive images of an infrared-window channel (IR1) of the Himawari-8 satellite using particle image velocimetry (PIV) based on the theory of cross-correlation schemes. A multipass scheme and an adaptive interrogation scheme were also employed to increase spatial resolution and accuracy. For height assignment, an infrared-window method was applied for opaque cloud, while an H2O-intercept method was employed for semitransparent cloud. Validation was conducted by comparing the PIV-derived AMVs with wind fields obtained from NWP analysis, radiosonde observations, and the operational system from the Meteorological Satellite Center (MSC) of the Japan Meteorological Agency (JMA) or JMA/MSC. The comparison of wind velocity maps with the NWP data shows that the PIV-derived AMVs are capable of quantitatively depicting full-field wind field maps and strong jets in atmospheric circulation. Through comparisons with radiosonde observations, the root-mean-square error and wind speed bias (4.29 and −1.05 m s−1) of the PIV-derived AMVs are comparable to, although slightly greater than, that of the NWP data (3.88 and −0.26 m s−1). Based on comparison between the PIV-derived AMVs and wind fields obtained from the JMA/MSC operational system, the PIV-derived AMVs are again comparable, producing a slightly lower error but a larger wind speed bias (−1.05 vs 0.20 m s−1). This also implies that a better height assignment algorithm is necessary.

Funder

Central Weather Bureau Taiwan

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3