Simulating Extreme Etesians over the Aegean and Implications for Wind Energy Production in Southeastern Europe

Author:

Dafka Stella1,Toreti Andrea2,Luterbacher Juerg13,Zanis Prodromos4,Tyrlis Evangelos5,Xoplaki Elena1

Affiliation:

1. a Climatology, Climate Dynamics and Climate Change, Department of Geography, Justus Liebig University Giessen, Giessen, Germany

2. b Joint Research Centre, European Commission, Ispra, Italy

3. c Centre of International Development and Environmental Research, Justus Liebig University Giessen, Giessen, Germany

4. d Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece

5. e Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

AbstractEpisodes of extremely strong northerly winds (known as etesians) during boreal summer can cause hazardous conditions over the Aegean Archipelago (Greece) and represent a threat for the safe design, construction, and operation of wind energy turbines. Here, these extremes are characterized by employing a peak-over-threshold approach in the extended summer season (May–September) from 1989 to 2008. Twelve meteorological stations in the Aegean are used, and results are compared with 6-hourly wind speed data from five ERA-Interim–driven regional climate model (RCM) simulations from the European domain of the Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX). The main findings show that, in the range of wind speeds for the maximum power output of the turbine, the most etesian-exposed stations could operate 90% at a hub height of 80 m. The central and northern Aegean are identified as areas prone to wind hazards, where medium- to high-wind (class II or I according to the International Electrotechnical Committee standards) wind turbines could be more suitable. In the central Aegean, turbines with a cutout wind speed > 25 m s−1 are recommended. Overall, RCMs can be considered a valuable tool for investigating wind resources at regional scale. Therefore, this study encourages a broader use of climate models for the assessment of future wind energy potential over the Aegean.

Funder

Greek State Scholarship Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3