Skill and Skill Prediction of Cloud-Track Advection-Only Forecasting under a Cumulus-Dominated Regime

Author:

Srikrishnan Vivek1,Young George S.2,Brownson Jeffrey R. S.1

Affiliation:

1. Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania

2. Department of Meteorology and Atmospheric Science and Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania

Abstract

AbstractThe intermittency of solar power production is dependent on the evolution and advection of the nearby cloud field. A key problem related to solar energy integration is the improvement of 1-h-ahead forecasts to reduce the impact of intermittency on power systems operations. Many solar forecasts explicitly or implicitly assume Taylor’s hypothesis. While such advection-only forecasts can be presumed to be valid across sufficiently short time scales, it is not clear how rapidly the skill of such a forecast decays with increased lead time. As the goal is to improve the quality of 1-h-ahead forecasts, this work focuses on quantifying the skill of cloud-track wind-based cumulus-dominated cloud field forecasts with respect to lead time. No explicit connection is drawn to the quality of solar forecasts because of the importance of separating two potential sources of error: cloud field forecasting and radiative transfer estimation. It is found that the cumulus field forecast skill begins to asymptotically approach a minimum at lead times of beyond 30 min, suggesting that advection-only forecasts in a cumulus-dominated environment should not be relied upon for 1-h-ahead point forecasts used by radiative transfer methods to estimate solar power production. A first attempt at forming a probabilistic forecast that can quantify this increasing uncertainty when using advection-only methods is presented.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3