Affiliation:
1. National Center for Atmospheric Research, Boulder, Colorado
2. U.S. Army Corps of Engineers, Seattle, Washington
Abstract
AbstractWeather and climate variability strongly influence the people, infrastructure, and economy of Alaska. However, the sparse observational network in Alaska limits our understanding of meteorological variability, particularly of precipitation processes that influence the hydrologic cycle. Here, a new 14-yr (September 2002–August 2016) dataset for Alaska with 4-km grid spacing is described and evaluated. The dataset, generated with the Weather Research and Forecasting (WRF) Model, is useful for gaining insight into meteorological and hydrologic processes, and provides a baseline against which to measure future environmental change. The WRF fields are evaluated at annual, seasonal, and daily time scales against observation-based gridded and station records of 2-m air temperature, precipitation, and snowfall. Pattern correlations between annual mean WRF and observation-based gridded fields are r = 0.89 for 2-m temperature, r = 0.75 for precipitation, r = 0.82 for snow-day fraction, r = 0.55 for first snow day of the season, and r = 0.71 for last snow day of the season. A shortcoming of the WRF dataset is that spring snowmelt occurs too early over a majority of the state, due partly to positive 2-m temperature biases in winter and spring. Strengths include an improved representation of the interannual variability of 2-m temperature and precipitation and accurately simulated (relative to regional station observations) winter and summer precipitation maxima. This initial evaluation suggests that the 4-km WRF climate dataset robustly simulates meteorological processes and recent climatic variability in Alaska. The dataset may be particularly useful for applications that require high-temporal-frequency weather fields, such as driving hydrologic or glacier models. Future studies will provide further insight on its ability to represent other aspects of Alaska’s climate.
Funder
National Science Foundation
U.S. Army Corps of Engineers
Publisher
American Meteorological Society
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献