Quantitative Precipitation Estimation in the CASA X-band Dual-Polarization Radar Network

Author:

Wang Yanting1,Chandrasekar V.1

Affiliation:

1. Colorado State University, Fort Collins, Colorado

Abstract

Abstract This paper presents the sensing aspects and performance evaluation of the quantitative precipitation estimation (QPE) system in an X-band dual-polarization radar network developed by the Collaborative Adaptive Sensing of the Atmosphere (CASA) Engineering Research Center. CASA’s technology enables precipitation observation close to the ground and QPE is one of the important applications. With expanding urbanization all over the world, vulnerability to floods has increased from intense rainfall such as urban flash floods. The QPE products that are derived at high spatiotemporal resolution, which is enabled by the deployment of a dense radar network, have the potential to improve the prediction of flash-flooding threats when coupled with hydrological models. Derivation of QPE from radar observations is a challenging process, in which the use of dual-polarization radar variables is advantageous. At X band, the specific differential propagation phase (Kdp) between the orthogonal linear polarization states is particularly appealing. The Kdp field is robustly acquired using an adaptive estimation method, and a simple R(Kdp) relation is used to perform precipitation estimation in this X-band radar network. Radar observations and QPE from multiyear field experiments are used to demonstrate the performance of rainfall estimation from the single-parameter Kdp-based rainfall product. The operational feasibility of radar QPE using an X-band radar network is critically assessed.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference36 articles.

1. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment.;Brandes;J. Appl. Meteor.,2002

2. Polarimetric Doppler Weather Radar: Principles and Applications.;Bringi,2001

3. Raindrop axis ratios and size distributions in Florida rainshafts: An assessment of multiparameter radar algorithms.;Bringi;IEEE Trans. Geosci. Remote Sens.,1998

4. Polarimetric data evaluation in severe storms using two research dual-polarized radars.;Bringi,2002

5. The meteorological command and control structure of a dynamic, collaborative, automated radar network.;Brotzge,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3