Deployment of a Tethered-Balloon System for Microphysics and Radiative Measurements in Mixed-Phase Clouds at Ny-Ålesund and South Pole

Author:

Lawson R. Paul1,Stamnes Knut2,Stamnes Jakob3,Zmarzly Pat1,Koskuliks Jeff2,Roden Chris1,Mo Qixu1,Carrithers Michael1,Bland Geoffrey L.4

Affiliation:

1. SPEC, Inc., Boulder, Colorado

2. Stevens Institute of Technology, Hoboken, New Jersey

3. University of Bergen, Bergen, Norway

4. Wallops Flight Facility, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract A tethered-balloon system capable of making microphysical and radiative measurements in clouds is described and examples of measurements in boundary layer stratus clouds in the Arctic and at the South Pole are presented. A 43-m3 helium-filled balloon lofts an instrument package that is powered by two copper conductors in the tether. The instrument package can support several instruments, including, but not limited to, a cloud particle imager; a forward-scattering spectrometer probe; temperature, pressure, humidity, and wind sensors; ice nuclei filters; and a 4-π radiometer that measures actinic flux at 500 and 800 nm. The balloon can stay aloft for an extended period of time (in excess of 24 h) and conduct vertical profiles up to about 1–2 km, contingent upon payload weight, wind speed, and surface elevation. Examples of measurements in mixed-phase clouds at Ny-Ålesund, Svalbard (79°N), and at the South Pole are discussed. The stratus clouds at Ny-Ålesund ranged in temperature from 0° to −10°C and were mostly mixed phase with heavily rimed ice particles, even when cloud-top temperatures were warmer than −5°C. Conversely, mixed-phase clouds at the South Pole contained regions with only water drops at temperatures as cold as −32°C and were often composed of pristine ice crystals. The radiative properties of mixed-phase clouds are a critical component of radiative transfer in polar regions, which, in turn, is a lynch pin for climate change on a global scale.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3