Generalized Conditions for Hydraulic Criticality of Oceanic Overflows

Author:

Pratt Larry1,Helfrich Karl1

Affiliation:

1. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Abstract

Abstract Two methods for assessing the hydraulic criticality of an observed or modeled overflow are discussed. The methods are valid for single-layer deep flows with arbitrary potential vorticity and cross section. The first method is based on a purely steady view in which the flow at a given section is divided up into a group of “streamtubes.” A hydraulic analysis requires an extension of Gill’s functional formulation to systems with many degrees of freedom. The general form of the critical condition and associated compatibility condition for such a system are derived and applied to the streamtube model. As an aside, it is shown by example that Gill’s original critical condition can fail to capture all possible critical states, but that this problem is fixed when the multivariable approach is used. It is also shown how Gill’s method can be applied to certain dispersive or dissipative systems. The second method of assessing criticality involves direct calculation of linear, long-wave speeds using a time-dependent version of the streamtube model. This approach turns out to be better suited to the analysis of geophysical datasets. The significance of the local Froude number F is discussed. It is argued that F must take on the value unity at some point across a critical section.

Publisher

American Meteorological Society

Subject

Oceanography

Reference28 articles.

1. The hydraulics of two flowing layers of different densities.;Armi;J. Fluid Mech.,1986

2. Topographic Effects in Stratified Flows.;Baines,1995

3. The effects of rotation on flow or a single layer over a ridge.;Baines;Quart. J. Roy. Meteor. Soc.,1989

4. Rotating hydraulics of flow in a parabolic channel.;Borenäs;J. Fluid Mech.,1986

5. Theoretical calculations based on real topography of the deep-water flow through the Jungfern Passage.;Borenäs;J. Mar. Res.,2000

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3