Observations of Tidally Induced Currents over the Continental Slope of the Laptev Sea, Arctic Ocean

Author:

Pnyushkov A. V.1,Polyakov I. V.1

Affiliation:

1. International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Abstract

Abstract Two year-long (2004–05 and 2005–06) records of currents from two moorings deployed at the continental slope of the Laptev Sea (78°26′N, 125°40′E) are used in order to define the properties of tidal currents in the upper ~200-m ocean layer. Harmonic and spectral analyses of currents showed that the semidiurnal tidal constituent S2 dominates over the semidiurnal M2 and diurnal constituents. This dominance of the S2 constituent in the tidal currents is due to resonant interaction of the superinertial wave with sloping bottom topography. In contrast to the tidal currents, sea level changes are dominated by the M2 constituent, as seen from a tidal model by L. Padman and S. Erofeeva, using assimilation of observational data. Strong anticorrelation (−0.73 ± 0.05) was found between the upper 50-m S2 current amplitudes and local sea ice concentration, with fourfold (from ~2.0 to 8.5 cm s−1) amplification of tidal currents under ice-free conditions. This is probably due to a change of local resonance conditions for the S2 tidal current. These findings may be important for understanding the increasing role of tides in a seasonally ice-free Arctic Ocean.

Publisher

American Meteorological Society

Subject

Oceanography

Reference50 articles.

1. Ambient noise characteristics of the northwestern Barents Sea;Bourke;J. Acoust. Soc. Amer.,1993

2. Programs for computing properties of coastal-trapped waves and wind-driven motions over the continental shelf and slope;Brink,1987

3. The experimental generation of double Kelvin waves;Caldwell;Proc. Roy. Soc. London,1972

4. A note on tidal current rotation;Carbajal;Ocean Dyn.,2004

5. Enhanced subinertial diurnal tides over isolated topographic features;Chapman;Deep-Sea Res.,1989

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3