Simulation of Wave Breaking in One-Dimensional Spectral Environment

Author:

Chalikov Dmitry1,Babanin Alexander V.2

Affiliation:

1. Swinburne University of Technology, Victoria, Melbourne, Australia, and P.P. Shirshov Institute of Oceanology, Saint Petersburg, Russia

2. Swinburne University of Technology, Melbourne, Victoria, Australia

Abstract

Abstract Results of numerical investigations, based on full dynamic equations, are presented for wave breaking in a one-dimensional environment with a wave spectrum. The breaking is defined as a process of irreversible collapse of an individual wave in physical space, and the incipient breaker is a wave that reached a dynamic condition of the limiting stability where the collapse has not started yet but is inevitable. The main attention is paid to documenting the evolution of different wave characteristics before the breaking commences. It is shown that the breaking is a localized process that rapidly develops in space and time. No single characteristic, such as wave steepness, wave height, and asymmetry, can serve as a predictor of the incipient breaking. The process of breaking is intermittent; it happens spontaneously and is individually unpredictable. The evolution of geometric, kinematic, and dynamic characteristics of the breaking wave describes the process of breaking itself rather than indicating an imminent breaking. It is shown that the criterion of breaking, valid for the breaking due to modulation instability in one-dimensional waves trains, is not universal if applied to the conditions of spectral environment. In this context, the development of algorithms for parameterization of breaking for wave prediction models and for direct wave simulations is more important.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3