A Consistent Time-Split Numerical Scheme Applied to the Nonhydrostatic Compressible Equations*

Author:

Gassmann Almut1,Herzog Hans-Joachim2

Affiliation:

1. Meteorological Institute of the University of Bonn, Bonn, Germany

2. German Weather Service, Potsdam, Germany

Abstract

Abstract The primary interest of the paper is to apply a two-time-level split explicit time scheme developed by one of the authors to the Lokal-Modell (LM) of the German Weather Service (DWD). This model belongs to the operational NWP system at DWD, which makes it particularly interesting for this study. To better understand the implementation of this time scheme in a compressible nonhydrostatic model type, and so in the LM, a linear analysis is presented demonstrating how the equations are to be split up into fast- and slow-mode parts. For the fast-mode part, this analysis demonstrates how the connected short time-step scheme is necessary for a consistent treatment of gravity modes on the one side and a sufficient damping of acoustic modes on the other side. An extended linear stability analysis for the new splitting scheme follows then to establish its application in a full model. An advantage of the given time scheme is that any forward-in-time and stable advection scheme can be linked with the reformulated fast-mode equation part. A Runge–Kutta third-order-in-time and second-order-in-space scheme (RK3/2) has been applied to the horizontal advection, and the vertical advection terms are treated implicitly. A new consistent lower boundary condition and a radiative upper boundary condition are taken into account. Steady airflow simulations over an isolated mountain (Schär test) and the successful incorporation of the Klemp–Durran–Bougeault radiative upper boundary condition in the vertically implicit fast-mode scheme confirm the given approach as necessary and effective for the application of the time scheme.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3