A 4-Yr Climatology of Cold-Season Bow Echoes over the Continental United States

Author:

Burke Patrick C.1,Schultz David M.1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract A search of radar mosaics and level-II Weather Surveillance Radar-1988 Doppler (WSR-88D) data revealed 51 cold-season (October–April) bow echoes that occurred in the contiguous United States from 1997–98 to 2000–01. Proximity soundings indicated mean 0–2.5-, 0–5-, and 5–10-km shear values of 14, 23, and 19 m s−1, respectively. Mean CAPE was 1366 J kg−1. Most bow echoes developed from squall lines, groups of cells, or squall lines overtaking cells that originated in the path of the squall line. Overall, cell mergers occurred just prior to the development of 34 (67%) of the 51 bow echoes, and embedded supercells were present in the mature stage of 22 (43%) bow echoes. Nine severe, long-lived bow echoes (LBEs) were identified, and seven of these had damage paths that met derecho criteria. LBEs developed in strongly forced, dynamic synoptic patterns with low to moderate instability. As in previous observational studies, proximity soundings suggested that LBEs are possible within much wider ranges of sampled CAPE and shear than idealized numerical modeling studies have indicated. Cold-season bow echoes formed overwhelmingly (47 of 51) in southwesterly 500-mb flow. Twenty (39%) bow echoes formed in a Gulf coast synoptic pattern that produced strong shear and moderate instability over the southeastern United States. Nineteen (37%) and seven (14%) bow echoes, respectively, formed in the plains and east synoptic patterns, which resemble classic severe weather outbreak patterns. Four (8%) bow echoes developed in a northwest flow synoptic pattern that produced strong shear and moderate instability over the southern plains.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3