The NCEP Climate Forecast System

Author:

Saha S.1,Nadiga S.1,Thiaw C.1,Wang J.1,Wang W.2,Zhang Q.2,Van den Dool H. M.2,Pan H.-L.1,Moorthi S.1,Behringer D.1,Stokes D.1,Peña M.1,Lord S.1,White G.1,Ebisuzaki W.2,Peng P.2,Xie P.2

Affiliation:

1. Environmental Modeling Center, NOAA/NWS/NCEP/DOC, Washington, D.C

2. Climate Prediction Center, NOAA/NWS/NCEP/DOC, Washington, D.C

Abstract

Abstract The Climate Forecast System (CFS), the fully coupled ocean–land–atmosphere dynamical seasonal prediction system, which became operational at NCEP in August 2004, is described and evaluated in this paper. The CFS provides important advances in operational seasonal prediction on a number of fronts. For the first time in the history of U.S. operational seasonal prediction, a dynamical modeling system has demonstrated a level of skill in forecasting U.S. surface temperature and precipitation that is comparable to the skill of the statistical methods used by the NCEP Climate Prediction Center (CPC). This represents a significant improvement over the previous dynamical modeling system used at NCEP. Furthermore, the skill provided by the CFS spatially and temporally complements the skill provided by the statistical tools. The availability of a dynamical modeling tool with demonstrated skill should result in overall improvement in the operational seasonal forecasts produced by CPC. The atmospheric component of the CFS is a lower-resolution version of the Global Forecast System (GFS) that was the operational global weather prediction model at NCEP during 2003. The ocean component is the GFDL Modular Ocean Model version 3 (MOM3). There are several important improvements inherent in the new CFS relative to the previous dynamical forecast system. These include (i) the atmosphere–ocean coupling spans almost all of the globe (as opposed to the tropical Pacific only); (ii) the CFS is a fully coupled modeling system with no flux correction (as opposed to the previous uncoupled “tier-2” system, which employed multiple bias and flux corrections); and (iii) a set of fully coupled retrospective forecasts covering a 24-yr period (1981–2004), with 15 forecasts per calendar month out to nine months into the future, have been produced with the CFS. These 24 years of fully coupled retrospective forecasts are of paramount importance to the proper calibration (bias correction) of subsequent operational seasonal forecasts. They provide a meaningful a priori estimate of model skill that is critical in determining the utility of the real-time dynamical forecast in the operational framework. The retrospective dataset also provides a wealth of information for researchers to study interactive atmosphere–land–ocean processes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference69 articles.

1. Anderson, D. L. T. , and Coauthors, 2003: Comparison of the ECMWF seasonal forecast systems 1 and 2, including the relative performance for the 1997/8 El Niño. Tech. Memo. 404, ECMWF, Reading, United Kingdom, 93 pp.

2. Linear statistical short-term climate predictive skill in the Northern Hemisphere.;Barnston;J. Climate,1994

3. Prediction of ENSO episodes using canonical correlation analysis.;Barnston;J. Climate,1992

4. Long-lead seasonal forecasts—Where do we stand?;Barnston;Bull. Amer. Meteor. Soc.,1994

5. NCEP forecasts of the El Niño of 1997–98 and its U.S. impacts.;Barnston;Bull. Amer. Meteor. Soc.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3