Heterogeneous Mixture Distributions for Modeling Multisource Extreme Rainfalls*

Author:

Shin Ju-Young1,Lee Taesam2,Ouarda Taha B. M. J.1

Affiliation:

1. Institute Center for Water Advanced Technology and Environmental Research, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates

2. Department of Civil Engineering, ERI, Gyeongsang National University, Jinju, South Korea

Abstract

Abstract Frequency analysis has been widely applied to investigate the behavior and characteristics of hydrometeorological variables. Hydrometeorological variables occasionally show mixture distributions when multiple generating phenomena cause the extreme events to occur. In such cases, a mixture distribution should be applied. Past studies on mixture distributions assumed that they are drawn from the same probability density functions. In fact, many hydrometeorological variables can consist of different types of probability density functions. Research on heterogeneous mixture distributions can lead to improvements in understanding the behavior and characteristics of hydrometeorological variables and in the capacity to model them properly. In the present study heterogeneous mixture distributions are developed to model extreme hydrometeorological events. To fit heterogeneous mixture distributions, the authors present an extension of the metaheuristic maximum likelihood approach. The performance of the parameter estimation method employed was verified through simulation tests. The fits of nonmixture, homogeneous mixture, and heterogeneous mixture distributions were evaluated through the application to a real-world case study of the extreme rainfall events of South Korea. Results indicate that the heterogeneous mixture distribution is a good alternative when sources possessing dissimilar statistical characteristics influence extreme hydrometeorological variables.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3