A Probabilistic Wavelet–Support Vector Regression Model for Streamflow Forecasting with Rainfall and Climate Information Input*

Author:

Liu Zhiyong1,Zhou Ping2,Zhang Yinqin3

Affiliation:

1. Institute of Geography, Heidelberg University, Heidelberg, Germany

2. Department of Forest Ecology, Guangdong Academy of Forestry, Guangzhou, China

3. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China, and Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana

Abstract

Abstract It is essential to explore reliable streamflow forecasting techniques for water resources management. In this study, a Bayesian wavelet–support vector regression model (BWS model) is developed for one- and multistep-ahead streamflow forecasting using local meteohydrological observations and climate indices including El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) as potential predictors. To accomplish this, a two-step strategy is applied. In the first step, the discrete wavelet transform is coupled with a support vector regression model for streamflow prediction. The three key factors of mother wavelets, decomposition levels, and edge effects are considered in the wavelet decomposition phase when using the hybrid wavelet–support vector regression model (WS model). Different combinations of these factors form a variety of WS models with corresponding forecasts. The second step combines multiple candidate WS models with “good” performance via Bayesian model averaging. This integrates the predictive strengths of different candidate WS models, giving a realistic assessment of the predictive uncertainty. The new ensemble model is used to forecast daily and monthly streamflows at two sites in Dongjiang basin, southern China. The results show that the proposed BWS model consistently generates more reliable predictions for daily (lead times of 1–7 days) and monthly (lead times of 1–3 months) forecasts as compared with the best single-member WS models and the adaptive neuro-fuzzy inference system (ANFIS). Furthermore, the proposed BWS model provides detailed information about the predictive uncertainty.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3