Analyzing the Inundation Pattern of the Poyang Lake Floodplain by Passive Microwave Data

Author:

Shang Haolu1,Jia Li2,Menenti Massimo3

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, and Delft University of Technology, Delft, Netherlands

2. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

3. Delft University of Technology, Delft, Netherlands

Abstract

Abstract The soil wetness condition is a useful indicator of inundation hazard in floodplains, such as the Poyang Lake floodplain. Special Sensor Microwave Imager (SSM/I) passive microwave data were used to monitor water-saturated soil and open water areas of the Poyang Lake floodplain from 2001 to 2008, capturing the inundation patterns of this area in space and time. The polarization difference brightness temperature (PDBT) at 37 GHz is sensitive to the water extension even under dense vegetation. The zero-order radiative transfer model was simplified to retrieve the vertical–horizontal (V–H)-polarized effective emissivity difference from the PDBT at 37 GHz. Vegetation fractional area and vegetation transmission function were derived from NDVI to represent the vegetation attenuation. This effective emissivity difference has a quasi-linear relationship with the fractional area of water-saturated soil and standing water, no matter the frequency. Using the multifrequency-polarization surface emission (Qp) model and the Dobson model of the soil–water mixture, the two segments of this relationship were combined into a quasi-linear model. Comparing the retrieved water-saturated soil and standing water area of Poyang Lake with the lake area obtained from the MODIS and synthetic aperture radar (SAR) image at higher spatial resolution, the calculations show a good fit with the MODIS and SAR data, with R2 = 0.7664 and relative RMSE = 17.74%. The cross-correlation analysis shows that the Poyang Lake extension fluctuates with a 5-day time lag with the upstream land area of water-saturated soil and standing water. Since the closure of the Three Gorges Dam, this relationship is more evident.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3