Climate Risks of the Transition to a Renewable Energy Society: The Need for Extending the Research Agenda

Author:

Aall Carlo1,Wanvik Tarje23,Dale Brigt4

Affiliation:

1. a Western Norway Research Institute, Sogndal, Norway

2. b Norce Climate, Bergen, Norway

3. c Bjerknes Centre for Climate Research, Bergen, Norway

4. d Nordland Research Institute, Svolvær, Norway

Abstract

Abstract To reach the 1.5°–2° goal of the Paris Agreement, the speed of transition to a renewable energy society must increase significantly. Applying Perrow’s theory of societal risk, we argue that switching from a fossil-based energy system to a future 100% renewable energy system may increase climate risks. Reviewing policy and research literature, and interviewing key energy policy actors in Norway, we find that there is limited knowledge on this topic and that the knowledge that does exist suffers from several shortcomings. Climate risks are generally discussed by applying future climate to the current energy system and thus failing to consider climate vulnerabilities caused by the ongoing energy transition. Also, discussions are frequently limited to subsystem reflections as opposed to system reflections and mostly present supply-side perspectives as opposed to demand-side perspectives. Most of the policy actors conclude that a future 100% renewable energy system will mainly benefit from climate change and reduce rather than increase climate risks. A research agenda is proposed to gain a better understanding of how the ongoing energy transitions can affect climate risks, especially to address the potential that reducing the level of energy consumption, diversifying energy sources, and prioritizing short-traveled energy can have to reduce climate risk in high-consuming countries. Significance Statement Switching from a fossil-based to a mostly “climate driven” renewable energy system may increase climate risks, and rapid transitions may increase risks even more. Still, knowledge of such risks is limited and suffers from several shortcomings. Studies are generally applying future climate to current energy system conditions and thus failing to consider vulnerabilities caused by the ongoing transformation of the energy system. Studies so far are also often limited to analyzing only parts of the system and not the energy system as a whole, and they are aiming at the production side rather than the consumption side. Thus, they tend to conclude that the energy system will mainly benefit from climate change. To reduce climate risks, we claim the need to focus on energy consumption and short-traveled energy.

Funder

Norges Forskningsråd

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Reference46 articles.

1. Investigating the potential of applying theories on rebound effects and mechanisms to the climate discourse: The case of tourism;Aall, C.,2016

2. Climate change and global water resources: SRES emissions and socio-economic scenarios;Arnell, N.,2004

3. Risk Society: Towards a New Modernity.;Beck, U.,1992

4. Editorial: Linking climate change and sustainable development at the local level;Bizikova, L.,2007

5. Multilevel risk governance and urban adaptation policy;Corfee-Morlot, J.,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3