Modeling Decadal Changes on the Indian Ocean Section I5 at 32°S

Author:

Murray R. J.1,Bindoff Nathaniel L.2,Reason C. J. C.3

Affiliation:

1. Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart, and School of Earth Sciences, University of Melbourne, Melbourne, Australia

2. Antarctic Climate and Ecosystems CRC, University of Tasmania, and CSIRO Marine and Atmospheric Research, Hobart, Australia

3. Department of Oceanography, University of Cape Town, Rondebosch, South Africa

Abstract

Abstract A near-global ocean model with resolution enhanced in the southern Indian Ocean has been spun up to seasonal equilibrium and then driven by NCEP–NCAR reanalysis 1 monthly mean forcings and Hadley SSTs over the period 1948–2002. The aim was to simulate changes in the subsurface properties observed in hydrographic surveys at 32°S in the Indian Ocean in 1965, 1987, and 2002. These surveys showed a zonally averaged cooling on isopycnals of 0.5° and 0.3°C in mode and intermediate waters between 1965 and 1987 and a warming of the mode water coupled with a continued cooling of the intermediate water between 1987 and 2002. The major changes in isopycnal depth and temperature modeled in this study were confined to the mode water and were qualitatively similar to those observed but concentrated in a lower density class and in the eastern half of the section. The dominant changes here were multidecadal, with maximum temperatures on the σθ = 26.7 kg m−3 isopycnal being reached in 1968 and minimum temperatures in 1990. The simulations showed a propagation of interannual anomalies toward the section from a region of deep late winter mixed layers in the southeast Indian Ocean within a period of several years. Surface temperatures in this region were lowest in the 1960s and highest in the late 1980s. Temperatures on isopycnals showed the opposite variation, consistent with SST having the controlling effect on mixed layer density and depth. Isopycnal depths within the mode water were strongly correlated with temperature, implying a redistribution of mode water density classes, the greatest volume of mode water being produced in a higher density class (σθ = 26.8–27.0 kg m–3) during the period of cooler surface forcing in the 1960s and 1970s than during the warmer period following (σθ = 26.6–26.8 kg m–3).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

1. Are observed decadal changes in intermediate water masses a signature of anthropogenic climate change?;Banks;Geophys. Res. Lett.,2000

2. Barker, P. M. , 2004: The circulation and formation of water masses south of Australia and the interannual wind variability along the southern Australian coast. Ph.D. thesis, University of Melbourne, 351 pp.

3. Warming of the water column in the southwest Pacific Ocean.;Bindoff;Nature,1992

4. Decadal changes along an Indian Ocean section at 32°S and their interpretation.;Bindoff;J. Phys. Oceanogr.,2000

5. Accelerating the convergence to equilibrium of ocean–climate models.;Bryan;J. Phys. Oceanogr.,1984

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3