Exploring the Application of Flood Scaling Property in Hydrological Model Calibration

Author:

Abstract

Abstract Model calibration has always been one major challenge in the hydrological community. Flood scaling properties (FS) are often used to estimate the flood quantiles for data-scarce catchments based on the statistical relationship between flood peak and contributing areas. This paper investigates the potential of applying FS and multivariate flood scaling properties [multiple linear regression (MLR)] as constraints in model calibration. Based on the assumption that the scaling property of flood exists in four study catchments in northern China, eight calibration scenarios are designed with adopting different combinations of traditional indicators and FS or MLR as objective functions. The performance of the proposed method is verified by employing a distributed hydrological model, namely, the Soil and Water Assessment Tool (SWAT) model. The results indicate that reasonable performance could be obtained in FS with fewer requirements of observed streamflow data, exhibiting better simulation of flood peaks than the Nash–Sutcliffe efficiency coefficient calibration scenario. The observed streamflow data or regional flood information are required in the MLR calibration scenario to identify the dominant catchment descriptors, and MLR achieves better performance on catchment interior points, especially for the events with uneven distribution of rainfall. On account of the improved performance on hydrographs and flood frequency curve at the watershed outlet, adopting the statistical indicators and flood scaling property simultaneously as model constraints is suggested. The proposed methodology enhances the physical connection of flood peak among subbasins and considers watershed actual conditions and climatic characteristics for each flood event, facilitating a new calibration approach for both gauged catchments and data-scarce catchments. Significance Statement This paper proposes a new hydrological model calibration strategy that explores the potential of applying flood scaling properties as constraints. The proposed method effectively captures flood peaks with fewer requirements of observed streamflow time series data, providing a new alternative method in hydrological model calibration for ungauged watersheds. For gauged watersheds, adopting flood scaling properties as model constraints could make the hydrological model calibration more physically based and improve the performance at catchment interior points. We encourage this novel method to be adopted in model calibration for both gauged and data-scarce watersheds.

Funder

national key research and development program of china

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3