Affiliation:
1. a Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
2. b NOAA/Physical Sciences Laboratory, Boulder, Colorado
Abstract
Abstract
The water resources of the western United States have enormous agricultural and municipal demands. At the same time, droughts like the one enveloping the West in the summer of 2021 have disrupted supply of this strained and precious resource. Historically, seasonal forecasts of cool-season (November–March) precipitation from dynamical models such as North American Multi-Model Ensemble (NMME) and the Seasonal Forecasting System 5 (SEAS5) from the European Centre for Medium-Range Weather Forecasts have lacked sufficient skill to aid in Western stakeholders’ and water managers’ decision-making. Here, we propose a new empirical–statistical framework to improve cool-season precipitation forecasts across the contiguous United States (CONUS). This newly developed framework is called the Statistical Climate Ensemble Forecast (SCEF) model. The SCEF framework applies a principal component regression model to predictors and predictands that have undergone dimensionality reduction, where the predictors are large-scale meteorological variables that have been prefiltered in space. The forecasts of the SCEF model captures 12.0% of the total CONUS-wide standardized observed variance over the period 1982/83–2019/20, whereas NMME captures 7.2%. Over the more recent period 2000/01–2019/20, the SCEF, NMME, and SEAS5 models respectively capture 11.8%, 4.0%, and 4.1% of the total CONUS-wide standardized observed variance. An important finding is that much of the improved skill in the SCEF, with respect to models such as NMME and SEAS5, can be attributed to better forecasts across most of the western United States.
Publisher
American Meteorological Society
Reference43 articles.
1. A new look at the statistical model identification;Akaike, H.,1974
2. Advances in weather prediction;Alley, R. B.,2019
3. The quiet revolution of numerical weather prediction;Bauer, P.,2015
4. Predictability and forecast skill in NMME;Becker, E.,2014
5. Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献