Snowpack driven streamflow predictability under future climate: contrasting changes across two western Canadian river basins

Author:

Shrestha Rajesh R.1,Dibike Yonas B.1,Bonsal Barrie R.2

Affiliation:

1. Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, University of Victoria, Victoria, BC, Canada

2. Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada

Abstract

Abstract Anthropogenic climate change induced snowpack loss is affecting streamflow predictability, as it becomes less dependent on the initial snowpack conditions and more dependent on meteorological forecasts. We assess future changes to seasonal streamflow predictability over two large river basins, Liard and Athabasca in western Canada, by approximating streamflow response from the variable infiltration capacity (VIC) hydrologic model with the Bayesian regularized neutral network (BRNN) machine learning emulator. We employ the BRNN emulator in a test-bed ensemble streamflow prediction system by treating VIC simulated snow water equivalent (SWE) as a known predictor, and precipitation and temperature from GCMs as ensemble forecasts, thereby isolating the effect of SWE on streamflow predictability. We assess warm-season mean and maximum flow predictability over 2041-2070 and 2071-2100 future periods against 1981-2010 historical period. The results indicate contrasting patterns of change, with the predictive skills for mean flow generally declining for the two basins, and marginally increasing or decreasing for the headwater subbasins. The predictive skill for maximum flow declines for the relatively warmer Athabasca basin, and improves for the colder Liard basin and headwater subbasins. While the decreasing skill for the Athabasca is attributable to substantial loss in SWE, the improvement for the Liard and headwaters can be attributed to an earlier maximum flow timing that reduces the forecast horizon and offsets the effect of SWE loss. Overall, while the future change in SWE does affect the streamflow prediction skill, the loss of SWE alone is not a sufficient condition for the reduction in streamflow predictability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3