Can Model Parameterization Accounting for Hydrological Nonstationarity Improve Robustness in Future Runoff Projection?

Author:

Zheng Hongxing1,Chiew Francis H.S.1,Zhang Lu1

Affiliation:

1. a CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Abstract

Abstract Dominant hydrological processes of a catchment could shift due to a changing climate. This climate-induced hydrological nonstationarity could affect the reliability of future runoff projection developed using a hydrological model calibrated for the historical period as the model or parameters may no longer be suitable under a different future hydroclimate. This paper explores whether competing parameterization approaches proposed to account for hydrological nonstationarity could improve the robustness of future runoff projection compared to the traditional approach where the model is calibrated targeting overall model performance over the entire historical period. The modeling experiments are carried out using climate and streamflow datasets from southeastern Australia, which has experienced a long drought and exhibited noticeable hydrological nonstationarity. The results show that robust multicriteria calibration based on the Pareto front can provide a more consistent model performance over contrasting hydroclimate conditions, but at a slight expense of increased bias over the entire historical period compared to the traditional approach. However, the robust calibration does not necessarily result in a more reliable projection of future runoff. This is because the systematic bias in any parameterization approach would propagate from the historical period to the future period and would largely be cancelled out when estimating the relative runoff change. Ensemble simulations combining results from different parameterization considerations could produce a more inclusive range of future runoff projection as it covers the uncertainties due to model parameterization.

Funder

Department of Environment, Land, Water and Planning, State Government of Victoria

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3