Variability and changes in Pearl River Delta water level: oceanic and atmospheric forcing perspectives

Author:

Feng Xiangbo12,Zhang Wei1,Zhu Zhenglei1,Chevuturi Amulya23,Chen Wenlong4

Affiliation:

1. 1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China

2. 2 National Centre for Atmospheric Science and Department of Meteorology, University of Reading, UK

3. 3 UK Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, UK

4. 4 Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission, Guangzhou 510610, China

Abstract

AbstractUnderstanding water level (WL) fluctuations in river deltas is of importance for managing water resources and minimizing the impacts of floods and droughts. Here, we demonstrate the competing effects of atmospheric and oceanic forcing on multi-timescale variability and changes in the Pearl River Delta (PRD) WLs in southern China, using 52 years (1961–2012) of in-situ observations at 13 hydrological stations. PRD WL presents significant seasonal to decadal variations, with large amplitudes upstream related to strong variability of southern China rainfall, and with relatively small amplitudes at the coastal stations determined by sea level (SL) fluctuations of the northern South China Sea. We find that the strengths of atmospheric and oceanic forcing in PRD are not mutually independent, leading to a distinct contrast of WL–forcing relationships at upstream and coastal stations. In the transition zone, because of counteracts of atmospheric and oceanic forcing, no robust relationships are identified between WL and either of the forcing. We further show that in the drought season of the warm ENSO and PDO epochs, the effect of atmospheric (oceanic) forcing on PRD WL is largely enhanced (weakened), due to increased southern China rainfall and negative SL anomalies. Over the observation period, WL significantly decreased at upstream stations, by up to 28–42 mm/year for flood season, contrasting with the upward trends of <4.3 mm/year at coastal stations across all seasons. Southern China rainfall explains little of the observed WL trends, whilst SL rise is mostly responsible for the WL trends at coastal stations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3