Cold Season Performance of the NU-WRF Regional Climate Model in the Great Lakes Region

Author:

Notaro Michael1,Zhong Yafang2,Xue Pengfei3,Peters-Lidard Christa4,Cruz Carlos5,Kemp Eric5,Kristovich David6,Kulie Mark7,Wang Junming6,Huang Chenfu3,Vavrus Stephen J.8

Affiliation:

1. Nelson Institute Center for Climatic Research, University of Wisconsin-Madison, 1225 West Dayton Street, Madison, Wisconsin 53706, 608-261-1503

2. Space Science and Engineering Center, University of Wisconsin-Madison

3. Department of Civil and Environmental Engineering, Michigan Technological University

4. Hydrosphere, Biosphere, and Geophysics Earth Science Division, National Aeronautics and Space Administration Goddard Space Flight Center

5. National Aeronautics and Space Administration - Goddard Space Flight Center

6. Illinois State Water Survey, University of Illinois at Urbana-Champaign

7. National Oceanic and Atmospheric Administration – National Environmental Satellite, Data, and Information Service

8. Nelson Institute Center for Climatic Research, University of Wisconsin-Madison

Abstract

AbstractAs Earth’s largest collection of fresh water, the Laurentian Great Lakes have enormous ecological and socio-economic value. Their basin has become a regional hotspot of climatic and limnological change, potentially threatening its vital natural resources. Consequentially, there is a need to assess the current state of climate models regarding their performance across the Great Lakes region and develop the next generation of high-resolution regional climate models to address complex limnological processes and lake-atmosphere interactions. In response to this need, the current paper focuses on the generation and analysis of a 20-member ensemble of 3-km National Aeronautics and Space Administration (NASA)-Unified Weather Research and Forecasting (NU-WRF) simulations for the 2014-2015 cold season. The study aims to identify the model’s strengths and weaknesses; optimal configuration for the region; and the impacts of different physics parameterizations, coupling to a 1D lake model, time-variant lake-surface temperatures, and spectral nudging. Several key biases are identified in the cold-season simulations for the Great Lakes region, including an atmospheric cold bias that is amplified by coupling to a 1D lake model but diminished by applying the Community Atmosphere Model radiation scheme and Morrison microphysics scheme; an excess precipitation bias; anomalously early initiation of fall lake turnover and subsequent cold lake bias; excessive and overly persistent lake ice cover; and insufficient evaporation over Lakes Superior and Huron. The research team is currently addressing these key limitations by coupling NU-WRF to a 3D lake model in support of the next generation of regional climate models for the critical Great Lakes Basin.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3