A worldwide data science investigation of rainfall

Author:

Ignaccolo Massimiliano1,De Michele Carlo1

Affiliation:

1. SAS Institute, Cary, North Carolina, USA

Abstract

Abstract We perform a worldwide analysis of the rain drop size distribution using 166 dis-drometer datasets from 76 distinct sites for a total of 1,527,963 1-minute drop counts, 428,410 2-minute drop counts, and a total of 988,922,720 drops. Following data science tenets, we adopt a functional-agnostic description of the rain drop size distribution. In this way, we uncover the presence of an invariant structure of statistical relationship among the distribution parameters, not depending on location, synoptic origin, or type of disdrometer. The features of this structure are: 1) count-shape independence: there is no dependence between the drop count N and the shape of rain drop spectra. 2) mean-skewness prominence: the variability of the shape of rain drop spectra can be fully captured by its mean µ and skewness γ. 3) mean-skewness invariant parametrization: we derive empirical invariant functional forms expressing all other shape describing parameters in terms of the free parameters (µ, γ). The presented analysis reveals the global and local properties of the rain drops size distribution offering a coherent and universally applicable methodology to describe the rain drop size distribution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3