A Quantitative Definition of Global Warming Hiatus and 50-Year Prediction of Global-Mean Surface Temperature*

Author:

Wei Meng1,Qiao Fangli2,Deng Jia2

Affiliation:

1. College of Physical and Environment Oceanography, Ocean University of China, and Key Laboratory of Marine Science and Numerical Modeling, and First Institute of Oceanography, State Oceanic Administration, and Meteorology Bureau of Jiaozhou, Qingdao, China

2. Key Laboratory of Marine Science and Numerical Modeling, and First Institute of Oceanography, State Oceanic Administration, Qingdao, China

Abstract

Abstract Recent global warming hiatus has received much attention; however, a robust and quantitative definition for the hiatus is still lacking. Recent studies by Scafetta, Wu et al., and Tung and Zhou showed that multidecadal variability (MDV) is responsible for the multidecadal accelerated warming and hiatuses in historical global-mean surface temperature (GMST) records, though MDV itself has not received sufficient attention thus far. Here, the authors introduce four key episodes in GMST evolution, according to different phases of the MDV extracted by the ensemble empirical-mode decomposition method from the ensemble HadCRUT4 monthly GMST time series. The “warming (cooling) hiatus” and “typical warming (cooling)” periods are defined as the 95% confidence intervals for the locations of local MDV maxima (minima) and of their derivatives, respectively. Since 1850, the warming hiatuses, cooling hiatuses, and typical warming have already occurred three times and the typical cooling has occurred twice. At present, the MDV is in its third warming-hiatus period, which started in 2012 and would last until 2017, followed by a 30-yr cooling episode, while the trend will sustain the current steady growth in the next 50 years. Their superposition presents steplike rising since 1850. It is currently ascending a new height and will stay there until the next warming phase of the MDV carries it higher.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3