Tropical Cyclogenesis due to ITCZ Breakdown: Idealized Numerical Experiments and a Case Study of the Event in July 1988

Author:

Yokota Sho1,Niino Hiroshi2,Yanase Wataru2

Affiliation:

1. Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan

2. Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan

Abstract

Abstract The mechanism of tropical cyclogenesis due to the breakdown of the intertropical convergence zone (ITCZ breakdown) and the structure of associated vortices are studied by numerical experiments using a nonhydrostatic mesoscale model. First, an idealized numerical experiment, in which a simple initial state without external disturbances is assumed, is performed without cumulus parameterization. A zonally uniform forcing of high sea surface temperature (SST) is imposed to generate an ITCZ-like structure. This “ITCZ” starts to undulate and eventually breaks down to form several tropical cyclones (TCs). These TCs merge and end up with a single TC. The energy budget analysis shows that barotropic instability of the low-level flow associated with the ITCZ is responsible for the genesis of vortices, and TC-scale buoyancy production soon takes over to contribute to the intensification of TCs. Conversion from the cumulus-scale kinetic energy into the TC-scale kinetic energy is found to be insignificant during ITCZ breakdown. Additional experiments show that the presence of the warm SST belt and an inclusion of the β effect are not essential for the occurrence of ITCZ breakdown. A numerical simulation of ITCZ breakdown over the Pacific Ocean in July 1988 shows that the mechanism of the tropical cyclogenesis is similar to that in the idealized numerical experiments from the viewpoint of the energy budget. Therefore, horizontal shear instability of the low-level flow and TC-scale buoyancy production are generally more essential than mergers of cumulus-scale vortices for the tropical cyclogenesis due to ITCZ breakdown.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3