Effects of Horizontal Geometrical Spreading on the Parameterization of Orographic Gravity Wave Drag. Part II: Analytical Solutions

Author:

Eckermann Stephen D.1,Broutman Dave2,Knight Harold2

Affiliation:

1. Space Science Division, Naval Research Laboratory, Washington, D.C.

2. Computational Physics, Inc., Springfield, Virginia

Abstract

Abstract Effects of horizontal geometrical spreading on the amplitude variation with height of linear three-dimensional hydrostatic orographic gravity waves (OGWs) are quantified via relevant simplifications to the governing transform relations, leading to analytical solutions. The analysis is restricted to elliptical Gaussian obstacles with principal axes aligned parallel and perpendicular to unidirectional shear flow and to vertical displacement and steepness amplitudes, given their relevance to OGW drag parameterizations in global models. Two solutions are derived: a “small l” solution in which horizontal wavenumbers l orthogonal to the flow are taken to be much smaller than those parallel to the flow, and a “single k” solution in which horizontal wavenumbers k parallel to the flow have a single mean value. The resulting analytical relations, valid for arbitrary vertical profiles of upstream winds and stability, depend only on the obstacle’s elliptical aspect ratio β and a normalized height coordinate incorporating wind and stability variations. These analytical approximations accurately reproduce the salient features of the exact numerical transform solutions. These include monotonic decreases with height that asymptotically approach z−1/2 forms at large z and strong β dependence in amplitude diminution with height. Steepness singularities close to the surface are shown to be a mathematical consequence of the Hilbert transform approach to deriving complex wavefield solutions. These approximate analytical solutions for horizontal geometrical spreading effects on wave amplitude highlight the importance of this missing physics for current parameterizations of OGW drag and offer an accurate and efficient means of incorporating some of these omitted effects.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3