Baroclinic Eddies and the Extent of the Hadley Circulation: An Idealized GCM Study

Author:

Levine Xavier J.1,Schneider Tapio2

Affiliation:

1. Yale University, New Haven, Connecticut

2. ETH Zürich, Zurich, Switzerland, and California Institute of Technology, Pasadena, California

Abstract

The Hadley circulation has widened over the past 30 years. This widening has been qualitatively reproduced in general circulation model (GCM) simulations of a warming climate. Comprehensive GCM studies suggest this widening may be caused by a poleward shift in baroclinic eddy activity. Yet the limited amplitude of the climate change signals analyzed so far precludes a quantitative comparison with theories. This study uses two idealized GCMs, one with and one without an active hydrologic cycle, to investigate changes in the extent of the Hadley circulation over a wide range of climates. The climates span global-mean temperatures from 243 to 385 K and equator-to-pole temperature contrasts from 12 to 100 K. Baroclinic eddies control the extent of the Hadley circulation across most of these climates. A supercriticality criterion that quantifies the depth of baroclinic eddies relative to that of the troposphere turns out to be a good indicator of where baroclinic eddies become deep enough to terminate the Hadley circulation. The supercriticality depends on meridional temperature gradients and an effective stability that accounts for the effect of convective heating on baroclinic eddies. As the equator-to-pole temperature contrast weakens or the convective static stability increases, convective heating increasingly influences the thermal stratification of the troposphere and the supercriticality. Consistent with the supercriticality criterion, the Hadley circulation contracts as meridional temperature gradients increase, and it widens as the effective static stability increases. The former occurs during El Niño and may account for the observed Hadley circulation contraction then; the latter occurs during global warming.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3