Decadal Relationship between European Blocking and the North Atlantic Oscillation during 1978–2011. Part II: A Theoretical Model Study

Author:

Luo Dehai1,Yao Yao2,Dai Aiguo3

Affiliation:

1. RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, and Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao, China

2. RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, and Physical Oceanography Laboratory, College of Physical and Environmental Oceanography, Ocean University of China, Qingdao, China

3. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, and National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract In Part I of this study, it is revealed that decadal variations of European blocking, in its intensity, duration, and position, during 1978–2011 are modulated by decadal changes in the frequency of North Atlantic Oscillation (NAO) events associated with background Atlantic conditions. In Part II, reanalysis data are analyzed to first show that a T-bone-type structure of the climatological-mean blocking frequency in the Euro-Atlantic sector roughly results from a combination of the blocking frequency distributions along the southeast–northwest (SE–NW) direction associated with negative-phase NAO (NAO−) events and along the southwest–northeast (SW–NE) direction associated with positive-phase NAO (NAO+) events. A nonlinear multiscale interaction (NMI) model is then used to examine the physical processes behind the blocking frequency distributions. This model shows that the combination of eastward- and westward-displaced blocking frequency patterns along the SW–NE and SE–NW directions associated with NAO+ and NAO− events leads to a T-bone-type frequency distribution, as seen in reanalysis data. Moreover, it is found that the westward migration of intense, long-lived blocking anomalies over Europe following NAO+ events is favored (suppressed) when the Atlantic mean zonal wind is relatively weak (strong). This result is held for the strong (weak) western Atlantic storm track. This helps explain the findings in Part I. In particular, long-lived blocking events with double peaks can form over Europe because of reintensification during the NAO+ decay phase, when the mean zonal wind weakens. But the double-peak structure disappears and becomes a strong single-peak structure as the mean zonal wind strengthens.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3