Affiliation:
1. Institute for Theoretical Physics, Eötvös University, and MTA–ELTE Theoretical Physics Research Group, Budapest, Hungary
Abstract
Abstract
The dynamics of modulated point vortex pairs is investigated on a rotating sphere, where modulation is chosen to reflect the conservation of angular momentum (potential vorticity). In this setting the authors point out a qualitative difference between the full spherical dynamics and the one obtained in a β-plane approximation. In particular, dipole trajectories starting at the same location evolve to completely different directions under these two treatments, despite the fact that the deviations from the initial latitude remain small. This is a strong indication for the mathematical inconsistency of the traditional β-plane approximation. At the same time, a consistently linearized set of equations of motion leads to trajectories agreeing with those obtained under the full spherical treatment. The β-plane advection patterns due to chaotic advection in the velocity field of finite-sized vortex pairs are also found to considerably deviate from those of the full spherical treatment, and quantities characterizing transport properties (e.g., the escape rate from a given region) strongly differ.
Publisher
American Meteorological Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献