Explicitly Simulated Electrification and Lightning within a Tropical Cyclone Based on the Environment of Hurricane Isaac (2012)

Author:

Fierro Alexandre O.1,Mansell Edward R.2,Ziegler Conrad L.2,MacGorman Donald R.2

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract This work analyzes a high-resolution 350-m simulation of the electrification processes within a hurricane in conjunction with available total lightning observations to augment the general understanding of some of the key cloud-scale electrification processes within these systems. The general environment and trends of Hurricane Isaac (2012), whose lightning activity was observed by the Earth Networks Total Lightning Network, were utilized to produce a reasonable tropical cyclone simulation. The numerical model in this work employs explicit electrification and lightning parameterizations within the Weather Research and Forecasting Model. Overall, simulated storm-total flash origin density rates remain comparable to the observations. Because simulated reflectivities were larger and echo tops were higher in the eyewall than observed, the model consistently overestimated lightning rates there. The gross vertical charge structure in the eyewall resembled a normal tripole or a positive dipole, depending on the location. The negative charge at middle levels and positive at upper levels arose primarily from noninductive charging between graupel and ice crystals/snow. As some graupel melted into rain, the main midlevel negative charge region extended down to the surface in some places. The large volume of positively charged snow aloft caused a radially extensive negative screening layer to form on the lighter ice crystals above it. Akin to continental storms and tropical convection, lightning activity in the eyewall was well correlated with the ice water path (r > 0.7) followed by the graupel + hail path (r ≈ 0.7) and composite reflectivity at temperatures less than −10°C and the snow + ice path (r ≈ 0.5). Relative maxima in updraft volume, graupel volume, and total lightning rates in the eyewall all were coincident with the end of an intensification phase.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3