Observation of Moisture Tendencies Related to Shallow Convection

Author:

Bellenger H.1,Yoneyama K.1,Katsumata M.1,Nishizawa T.2,Yasunaga K.3,Shirooka R.1

Affiliation:

1. Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

2. National Institute for Environmental Studies, Tsukuba, Japan

3. Department of Earth Science, University of Toyama, Toyama, and Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Abstract

Abstract Tropospheric moisture is a key factor controlling the global climate and its variability. For instance, moistening of the lower troposphere is necessary to trigger the convective phase of a Madden–Julian oscillation (MJO). However, the relative importance of the processes controlling this moistening has yet to be quantified. Among these processes, the importance of the moistening by shallow convection is still debated. The authors use high-frequency observations of humidity and convection from the Research Vessel (R/V) Mirai that was located in the Indian Ocean ITCZ during the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the MJO (CINDY/DYNAMO) campaign. This study is an initial attempt to directly link shallow convection to moisture variations within the lowest 4 km of the atmosphere from the convective scale to the mesoscale. Within a few tens of minutes and near shallow convection occurrences, moisture anomalies of 0.25–0.5 g kg−1 that correspond to tendencies on the order of 10–20 g kg−1 day−1 between 1 and 4 km are observed and are attributed to shallow convective clouds. On the scale of a few hours, shallow convection is associated with anomalies of 0.5–1 g kg−1 that correspond to tendencies on the order of 1–4 g kg−1 day−1 according to two independent datasets: lidar and soundings. This can be interpreted as the resultant mesoscale effect of the population of shallow convective clouds. Large-scale advective tendencies can be stronger than the moistening by shallow convection; however, the latter is a steady moisture supply whose importance can increase with the time scale. This evaluation of the moistening tendency related to shallow convection is ultimately important to develop and constrain numerical models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3