Modulation of Midtropospheric CO2 by the South Atlantic Walker Circulation*

Author:

Jiang Xun1,Olsen Edward T.2,Pagano Thomas S.2,Su Hui2,Yung Yuk L.3

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas

2. Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Abstract

Abstract Midtropospheric CO2 data from the Atmospheric Infrared Sounder (AIRS) are used in this study to explore the variability of CO2 over the South Atlantic Ocean. It was found that the area-averaged CO2 over the South Atlantic Ocean is less than that over South America by about 1 ppm during December–March. This CO2 contrast is due to the large-scale vertical circulation over this region. During December–March, there is sinking motion over the South Atlantic Ocean. The sinking motion brings high-altitude air with a slightly lower concentration of CO2 to the midtroposphere. Meanwhile, air rising over South America brings near-surface air with a higher concentration of CO2 to the midtroposphere. As a result, the AIRS midtropospheric CO2 concentration is lower over the South Atlantic Ocean than over South America during December–March. The detrended AIRS midtropospheric CO2 difference correlates well with the inverted and detrended 400-hPa vertical pressure velocity difference between the South Atlantic and South America. Results obtained from this study demonstrate the strong impact of large-scale circulation on the vertical distribution of CO2 in the free troposphere and suggest that midtropospheric CO2 measurements can be used as an innovative observational constraint on the simulation of large-scale circulations in climate models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Atmospheric Infrared Sounder;Handbook of Air Quality and Climate Change;2023

2. The Atmospheric Infrared Sounder;Handbook of Air Quality and Climate Change;2021-12-18

3. Temporal evolution of mid-tropospheric CO2 over the Indian Ocean;Atmospheric Environment;2021-07

4. Influence of Walker circulations on East African rainfall;Climate Dynamics;2021-01-05

5. Interannual and Seasonal Cycles of CO2 from GOSAT and AIRS;IOP Conference Series: Earth and Environmental Science;2019-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3