A Diurnal Predictability Barrier for Weather Forecasts

Author:

Wang Peng1,Jin Yishuai23,Liu Zhengyu4

Affiliation:

1. 1 Department of Atmospheric and Oceanic Sciences, Peking University, China

2. 2 Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China

3. 3 Open studio for Ocean-Climate-Isotope Modeling, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, China

4. 4 Atmospheric Science Program, Department of Geography, The Ohio State University, USA

Abstract

AbstractIn this study, we investigate a diurnal predictability barrier (DPB) for weather predictions using an idealized model and observations. This DPB is referred to a maximum drop of predictability (e.g., autocorrelation) at a particular time of the day, regardless of the initial time. Previous studies demonstrated that a strong seasonal cycle of El Niño-Southern Oscillation (ENSO) growth rate is responsible for the seasonal predictability barrier of the ENSO in spring. This led us to investigate whether or not a strong diurnal cycle may generate a DPB. We study the DPB using an idealized model, the Lorenz 1963 model (Lorenz63), with the addition of a diurnal cycle. We find that diurnal growth rate can generate a DPB in this chaotic system, regardless of the initial error. Finally, by calculating the autocorrelation function using the hourly data of surface temperature, we explore the DPB at two stations in Wisconsin, USA and Beijing, China. A clear DPB feature is found at both stations. The dramatic drop of predictability at a specific time of the day is likely due to the diurnal variation of the system. This is a new feature that needs further study for short-term weather predictions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3