On the Investigation of the Typology of Fog Events in an Arid Environment and the Link with Climate Patterns

Author:

Mohan T. S.1,Temimi Marouane2,Ajayamohan R. S.3,Nelli Narendra Reddy2,Fonseca Ricardo2,Weston Michael2,Valappil Vineeth2

Affiliation:

1. Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates, and National Center for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India

2. Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

3. Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Abstract

AbstractThe central aim of this work is to investigate the characteristics of fog events over the United Arab Emirates (UAE) and identify the underlying physical processes responsible for fog initiation and dissipation. To achieve this, hourly meteorological measurements at eight airport stations, along with ERA5 reanalysis data (1995–2018), are utilized. The analysis indicates the dominance of radiation fog (RAD) as, on average, 70% of the observed events fall under this category. Fog in the UAE typically forms between 2000 and 0200 local time (LT) and dissipates between 0600 and 0900 LT. During a typical dense fog event recorded during 22–23 December 2017, cooling and moistening tendencies of up to 1.2 K h−1 and 0.7 g kg−1 h−1 are observed ~5–6 h before fog onset. In the vertical, a dry and warm layer above 750 hPa gradually descends from above 500 hPa to promote the development of fog. Similar conclusions are reached when analyzing composites of fog events. Further, the variability of fog occurrence associated with El Niño–Southern Oscillation (ENSO) patterns is explored. It is concluded that the El Niño (warm) and La Niña (cold) phases exhibit very different spatial characteristics with respect to surface meteorological variables. In particular, during El Niño events, the near-surface atmosphere is cooler and moister compared to La Niña events, favoring RAD fog formation over the UAE. Besides, fog events during El Niño years tend to last longer compared to La Niña years due to an earlier onset.

Funder

National Center of Meteorology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3