A Statistical Evaluation of WRF-LES Trace Gas Dispersion Using Project Prairie Grass Measurements

Author:

Rybchuk Alex1,Alden Caroline B.2,Lundquist Julie K.3,Rieker Gregory B.1

Affiliation:

1. Department of Mechanical Engineering, University of Colorado Boulder, Boulder CO, 80309

2. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder CO, 80309 and National Oceanic and Atmospheric Administration, Boulder, CO 80305

3. Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder CO, 80309 and National Renewable Energy Laboratory, Golden CO, 80401

Abstract

AbstractIn recent years, new measurement systems have been deployed to monitor and quantify methane emissions from the natural gas sector. Large-eddy simulation (LES) has complemented measurement campaigns by serving as a controlled environment in which to study plume dynamics and sampling strategies. However, with few comparisons to controlled-release experiments, the accuracy of LES for modeling natural gas emissions is poorly characterized. In this paper, we evaluate LES from the Weather Research and Forecasting (WRF) model against Project Prairie Grass campaign measurements and surface layer similarity theory. Using WRF-LES, we simulate continuous emissions from 30 near-surface trace gas sources in two stability regimes: strong and weak convection. We examine the impact of grid resolutions ranging from 6.25 m to 52 m in the horizontal dimension on model results. We evaluate performance in a statistical framework, calculating fractional bias and conducting Welch’s t-tests. WRF-LES accurately simulates observed surface concentrations at 100 m and beyond under strong convection; simulated concentrations pass t-tests in this region irrespective of grid resolution. However, in weakly convective conditions with strong winds, WRF-LES substantially overpredicts concentrations – the magnitude of fractional bias often exceeds 30%, and all but one C-test fails. The good performance of WRF-LES under strong convection correlates with agreement with local free convection theory and a minimal amount of parameterized turbulent kinetic energy. The poor performance under weak convection corresponds to misalignment with Monin-Obukhov similarity theory and a significant amount of parameterized turbulent kinetic energy.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3