Downstream Evolution and Coastal-to-Inland Transition of Landfalling Lake-Effect Systems

Author:

Gowan Thomas M.1,Steenburgh W. James1,Minder Justin R.2

Affiliation:

1. a Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

2. b Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

AbstractThe distribution and intensity of lake- and sea-effect (hereafter lake-effect) precipitation are strongly influenced by the mode of landfalling lake-effect systems. Here, we used idealized large-eddy simulations to investigate the downstream evolution and coastal-to-inland transition of two lake-effect modes: 1) a long-lake-axis-parallel (LLAP) band generated by an oval body of water (hereafter lake; e.g., Lake Ontario) and 2) broad-coverage, open-cell convection generated by an open lake (e.g., Sea of Japan). Under identical atmospheric conditions and lake-surface temperatures, the oval lake generates a LLAP band with heavy precipitation along the midlake axis, whereas the open lake generates broad-coverage, open-cell convection with widespread, light accumulations. Over the oval lake, the LLAP band features a thermally forced and diabatically enhanced cross-band secondary circulation with convergence and ascent over the midlake axis. Downstream of the lake, flanking airstreams that avoid lake modification merge beneath the band where they experience sublimational cooling, producing a cold pool. At the upstream edge of the cold pool, a coastal baroclinic zone forms. Above this zone, ascent and hydrometeor mass growth are maximized, resulting in an inland precipitation maximum due to subsequent hydrometeor transport and fallout. Over the open lake, individual open cells grow larger and stronger with overwater extent, but a convective-to-stratiform transition begins at the coast. Here, convective vigor decays, mesoscale ascent begins, and enhanced hydrometeor growth results in an inland precipitation maximum. These results highlight variations in the coastal-to-inland transition of lake-effect systems that ultimately influence the distribution and intensity of lake-effect precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3